Up-regulation of Synaptotagmin IV within amyloid plaque-associated dystrophic neurons in Tg2576 mouse model of Alzheimer’s disease
نویسندگان
چکیده
AIM To investigate the involvement of the vesicular membrane trafficking regulator Synaptotagmin IV (Syt IV) in Alzheimer's disease pathogenesis and to define the cell types containing increased levels of Syt IV in the β-amyloid plaque vicinity. METHODS Syt IV protein levels in wild type (WT) and Tg2576 mice cortex were determined by Western blot analysis and immunohistochemistry. Co-localization studies using double immunofluorescence staining for Syt IV and markers for astrocytes (glial fibrillary acidic protein), microglia (major histocompatibility complex class II), neurons (neuronal specific nuclear protein), and neurites (neurofilaments) were performed in WT and Tg2576 mouse cerebral cortex. RESULTS Western blot analysis showed higher Syt IV levels in Tg2576 mice cortex than in WT cortex. Syt IV was found only in neurons. In plaque vicinity, Syt IV was up-regulated in dystrophic neurons. The Syt IV signal was not up-regulated in the neurons of Tg2576 mice cortex without plaques (resembling the pre-symptomatic conditions). CONCLUSIONS Syt IV up-regulation within dystrophic neurons probably reflects disrupted vesicular transport or/and impaired protein degradation occurring in Alzheimer's disease and is probably a consequence but not the cause of neuronal degeneration. Hence, Syt IV up-regulation and/or its accumulation in dystrophic neurons may have adverse effects on the survival of the affected neuron.
منابع مشابه
Neurites containing the neurofilament-triplet proteins are selectively vulnerable to cytoskeletal pathology in Alzheimer’s disease and transgenic mouse models
Amyloid-β plaque accumulation in Alzheimer's disease (AD) is associated with dystrophic neurite (DN) formation and synapse loss in principal neurons, but interneuron pathology is less clearly characterized. We compared the responses of neuronal processes immunoreactive for either neurofilament triplet (NF(+)) or calretinin (CR(+)) to fibrillar amyloid (Aβ) plaques in human end-stage and preclin...
متن کاملThymoquinone recovers learning function in a rat model of Alzheimer’s disease
Objective: Alzheimer's disease is a neurodegenerative disorder characterized by accumulation of amyloid beta in the hippocampus. In recent decades, herbal medicine has been widely used to treat many neurodegenerative disorders,as in comparison to conventional drugs, herbal remedies exert minimal side effects. Here, the effects of thymoquinone, as the main active component of Nigella sativa, on ...
متن کاملVitamin E therapy prevents the accumulation of congophilic amyloid plaques and neurofibrillary tangles in the hippocampus in a rat model of Alzheimer’s disease
Objective(s): Vitamin E may have beneficial effects on oxidative stress and Aβ-associated reactive oxygen species production in Alzheimer’s disease. But, the exact role of vitamin E as a treatment for Alzheimer’s disease pathogenesis still needs to be studied. Hence, we examined the therapeutic effects of vitamin E on the density of congophilic amyloid plaques and neur...
متن کاملUltrastructural Abnormalities in APP/PSEN1 Transgenic Mouse Brain as the Alzheimer’s Disease Model
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is the most common cause of dementia in the elderly. It is characterized by age-dependent decline of memory and multiple cognitive functions and severe neurodegeneration (Manczak et al., 2010). Various neurophathological hallmarks of AD are reported, such as intracellular neurofibrillary tangles, amyloid β (Aβ) plaque, dy...
متن کاملThe Neuronal Adaptor Protein X11 Reduces Amyloid -Protein Levels and Amyloid Plaque Formation in the Brains of Transgenic Mice*
Accumulation of cerebral amyloid -protein (A ) is believed to be part of the pathogenic process in Alzheimer’s disease. A is derived by proteolytic cleavage from a precursor protein, the amyloid precursor protein (APP). APP is a type-1 membrane-spanning protein, and its carboxyl-terminal intracellular domain binds to X11 , a neuronal adaptor protein. X11 has been shown to inhibit the production...
متن کامل